Appletaxi.ru

Реальное авто
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как правильно регулировать ток трансформатора в сварочном полуавтомате

Как правильно регулировать ток трансформатора в сварочном полуавтомате

Сварочный выпрямитель

Силовой

Одним из видов соединения и резки металлов является электросварка. Она выполняется при помощи сварочных аппаратов и электродов или специальной проволоки. Необходимая сила тока при этом зависит от диаметра электрода, вида работ – сварка или резка и толщины металла. Поэтому ее необходимо регулировать.

Несмотря на распространение новых, инверторных, аппаратов, у многих людей в гаражах и сараях остались старые устройства, которые нуждаются в ручной регулировке. Ее нельзя производить так же, как регулировать ток трансформатора в сварочном полуавтомате или инверторе, в которых эту работу выполняет электроника.

Разновидности токовых стабилизаторов

Светодиод загорается при достижении порогового значения тока. Для маломощных устройств этот показатель равняется 20 мА, для сверхъярких – от 350 мА. Разброс порогового напряжения объясняет наличие различных видов стабилизаторов.

Резисторные стабилизаторы

Для регулируемого стабилизатора параметров тока для маломощных светодиодов применяется схема КРЕН. Она предусматривает наличие элементов КР142ЕН12 либо LM317. Процесс выравнивания осуществляется при силе тока 1,5 А и напряжении на входе 40 В. В условиях нормального теплового режима резисторы рассеивают мощность до 10 т. Собственное энергопотребление составляет около 8 мА.

Узел LM317 удерживает на главном резисторе постоянную величину напряжения, регулируемую подстроечным элементом. Основной, или токораздающий элемент может стабилизировать ток, пропущенный через него. По этой причине стабилизаторы на КРЕН применяются для зарядки аккумуляторов.

Величина в 8 мА не изменяется даже при колебаниях тока и напряжения на входе.

Транзисторные устройства

Регулятор на транзисторах предусматривает использование одного или двух элементов. Несмотря на простоту схемы при колебаниях напряжения не всегда бывает стабильный ток нагрузки. При его увеличении на одном транзисторе повышается напряжение резистора до 0,5-0,6 В. после этого начинает работать второй транзистор. В момент его открытия первый элемент закрывается, а сила и величина тока, проходящие через него, понижается.

Второй транзистор должен быть биполярным.

Для реализации схемы с заменой стабилитронов на диоды применяются:

  • диоды VD1 и VD2;
  • резистор R1;
  • резистор R2.

Подача тока через светодиодный элемент задается резистором R2. Для выхода на линейный участок ВАХ-диодов с привязкой к току базового транзистора используется резистор R1. Чтобы транзистор сохранял устойчивость, напряжение питания не должно быть меньше суммарного напряжения диодов + 2-2,5 В.

Для получения тока 30 мА через 3 последовательно подключенных диода с напряжением 3,1 В по прямой производится запитка 12 В. Резисторное сопротивление должно равняться 20 Ом при мощности рассеивания 18 мВт.

Схема нормализует режим работы элементов, снижает токовые пульсации.

Схема с советскими транзисторами. Допустимое напряжение советских КТ940 или КТ969 – до 300 В, что подходит, если источник света – мощный SMD-элемент. Параметры тока задаются резистором. Напряжение стабилитрона составляет при этом 5,1 В, а мощность – 0,5 В.

Минус схемы – падение напряжения при повышении силы тока. Его можно устранить, заменив биполярный транзистор на MOSFET с низкими параметрами сопротивления. Мощный диод заменяется элементом IRF7210 на 12 А или IRLML6402 на 3,7 А.

Стабилизаторы тока на полевике

Полевой элемент отличается закороченным истоком и затвором, а также встроенным каналом. При использовании полевика (IRLZ 24) с 3-мя выводами на вход подается напряжение 50 В, на выходе получается 15,7 В.

Для подачи напряжения задействуется потенциал заземления. Параметры тока на выходе зависят от начального тока стока, и не привязываются к истоку.

Линейные устройства

Стабилизатор, или делитель постоянного показателя тока принимает нестабильное напряжение. На выходе линейный прибор его выравнивает. Он функционирует по принципу постоянного изменения параметров сопротивления для выравнивания питания на выходе.

К преимуществам эксплуатации относятся минимальное число деталей, отсутствие помех. Недостатком является малый КПД при разнице питания на входе и выходе.

Феррорезонансное устройство

Стабилизатор для переменного тока устаревшей модели, схема которого представлена конденсатором и двумя катушками – с ненасыщенным и насыщенным сердечником. К насыщенному (индуктивному) сердечнику подается напряжение постоянного типа, не зависимое от параметров тока. Это облегчает подбор данных для второй катушки и емкостный диапазон стабилизации питания.

Читайте так же:
Как отрегулировать программы автозапуска

Устройство работает по принципу качелей, которые сразу сложно остановить или раскачать сильнее. Подача напряжения происходит по инерции, поэтому возможны падения нагрузки или разрыв цепи питания.

Особенности схемы токового зеркала

Токовое зеркало, или отражатель выстраивается на паре транзисторов согласованного типа, т.е. с одинаковыми параметрами. Для их производства используется один светодиодный кристалл полупроводника.

Схема токового зеркала по уравнению Эберса-Молла. Принцип работы заключается в том, что транзисторные базы объединяются, а эмиттеры подкидываются на одну шину питания. В итоге параметры переходного напряжения сцепки «база – транзистор-эмиттер» равны.

Преимущества схемы заключаются в равном диапазоне устойчивости и отсутствии падения напряжение на резисторе-эмиттере. Параметры легче задаются при помощи тока. Недостаток заключается в эффекте Эрли – привязке напряжения на выходе к коллекторному и его колебания.

Схема токового зеркала Уилсона. Токовое зеркало может стабилизировать постоянную величину выходного тока и реализуется так:

  1. Транзисторы № 1 и № 1 включены по принципу стандартного токового зеркала.
  2. Транзистор № 3 фиксирует потенциал коллектора элемента № 1 на удвоенный параметр падения диодного напряжения.
  3. Оно будет меньше, чем напряжение питания, что подавляет эффект Эрли.
  4. Коллектор транзистора № 1 задействуется для установления режима схемы.
  5. Ток на выходе зависит от транзистора № 2.
  6. Транзистор № 3 трансформирует выходной ток в нагрузку с переменным напряжением.

Транзистор № 3 можно не согласовывать с остальными.

Стабилизатор компенсационного напряжения

Выпрямитель работает по принципу обратной связи цепи для напряжения. Полное или частичное напряжение приравнивает к опоре. В результате стабилизатор генерирует параметры напряжения ошибки, устраняя колебания яркости для светодиодов. Прибор состоит из следующих элементов:

  • Регулирующий элемент или транзистор, который совместно с сопротивлением нагрузки образует делитель напряжения. Эмиттерный показатель транзистора должен превышать ток нагрузки в 1,2 раза.
  • Усилитель – управляет РЭ, выполняется на базе транзистора №2. Маломощный элемент согласуется с мощным по составному принципу.
  • Источник напряжения опоры – в схеме задействуется стабилизатор параметрического типа. Он выравнивает напряжение стабилитрона и резистора.
  • Дополнительные источники.
  • Конденсаторы – для сглаживания пульсаций, устранения паразитного возбуждения.

Стабилизаторы компенсационного напряжения работают по принципу увеличения входного напряжения с дальнейшим возрастанием токов. Закрытие первого транзистора увеличивает сопротивление и напряжение зоны коллектор-эмиттер. После подачи нагрузки оно выравнивается до номинала.

Устройства на микросхемах

Для стабилизующих приборов применяется микросхема 142ЕН5 или LМ317. Она позволяет выровнять напряжение, принимая по цепи обратной связи сигнал от датчика, подключенного к сети тока нагрузки.

В качестве датчика задействует сопротивление, при котором регулятор может поддерживать постоянное напряжение и ток нагрузки. Сопротивление датчика будет меньше сопротивления по нагрузке. Схему задействуют для зарядных устройств, по ней же проектируется ЛЕД-лампа.

Импульсные стабилизаторы

Импульсный прибор отличается высоким КПД и при минимальных параметрах входного напряжения создают высокое напряжение потребителей. Для сборки используется микросхема МАХ 771.

Регулировать силу тока будут один или два преобразователя. Делитель выпрямительного типа выравнивает магнитное поле, понижая допустимую частоту напряжения. Для подачи тока на обмотку светодиодный элемент передает сигнал транзисторам. Стабилизация на выходе осуществляется посредством вторичной обмотки.

PicHobby.lg.ua

В статье расскажу, как сделать простой стабилизатор тока для светодиодов на полевом транзисторе.

Описание задумки.

Задолго до разработки фонарика на ATtiny13 мне уже доводилось работать со сверх-яркими светодиодами. И что могу сказать. Редкий радиолюбитель жаждет чтобы светодиоды перегорали, как можно чаще! :). Особенно мощные и дорогие. Вот и мне этого не хотелось и решил взяться за разработку стабилизатора тока.

Немного теории.

Мне часто задают один и тот же вопрос, мол почему именно стабилизатор тока лучше для светодиодов, а не стабилизатор напряжения. Ответ простой, но он многим не нравиться. Постараюсь пояснить на вольт-амперной характеристики(ВАХ) SMD светодиода типоразмера 3528, рисунок 1.

Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528

Рисунок 1 – Вольт-амперная характеристика(ВАХ) SMD светодиода типоразмера 3528 при 25⁰С.

Ось У – ток через светодиод.

Ось Х – падение напряжения на светодиоде.

Теперь внимание! Заявленный производителем ток для данного светодиода равен 20мА. Смотрим на рисунок и видим, что ток 20 мА приблизительно соответствует напряжению на светодиоде 3,4В. Если поднять напряжение на светодиоде до 3,5В, а это всего лишь на 0,1В больше чем его типовое напряжение, то ток увеличиться до 50мА, а это в 2,5 раза больше чем его заявленный ток. Если всё перевести в процентное соотношение, то получиться что ток возрастает в 2,5 раза, при увеличении напряжения всего лишь на 3%(округлил). Вот почему стабилизатор напряжения должен быть практически идеальным!

Читайте так же:
Как отрегулировать тяги на карбюраторе солекс

Теперь рассмотрим стабилизатор тока. Если стабилизировать ток 20мА, то увеличение тока на 3% даст результат – 20,6мА. Согласитесь, что это совсем другой результат и он куда лучше предыдущего!

Иногда мне пытаются доказать, что последовательное соединение светодиодов + стабилизатор напряжения лучше, чем параллельное + стабилизатор тока. Это, конечно, тема для отдельной статьи, но хочу тут немного пояснить, что параллельное соединение однозначно выигрывает.

Для примера возьмём пять светодиодов 20мА, 3,4В и соединим их последовательно и параллельно. При последовательном соединении если один светодиод перегорает и остаётся замкнутым, а такое бывает и часто, напряжение 17В(3,4В*5шт) делится между оставшимися четырьмя светодиодами в равных пропорциях (предположим что так). Получается, что падение напряжение на каждом светодиоде будет — 4,25В (17В/4шт). Ток при этом возрастает до неимоверных значений, а это приводит к последовательному перегоранию оставшихся светодиодов или части из них.

При параллельном соединении и стабилизации тока в 100мА(20мА*5шт) перегорание светодиода приведёт к увеличению тока на оставшихся всего на 5мА(20мА/4шт). Или по-другому: 100мА/4шт = 25мА – ток на каждом светодиоде. Разница очевидна! В этой статье не буду больше приводить плюсы и минусы каждого из решений, статья совсем о другом. Надеюсь пример был понятным. Мой личный выбор всегда на стороне параллельного соединения светодиодов и стабилизатора тока для них. Если и ваш тоже, то читайте дальше, как сделать несложный стабилизатор тока для светодиодов.

О схеме.

Принципиальная схема стабилизатора тока на полевом транзисторе показана на рисунке 2.

Стабилизатор тока на полевом транзисторе схема

Резистор R1 нужен для того чтобы транзистор VT2 открывался. Стабилитрон VD1 защищает затвор от перенапряжения, для транзистора P0903BDG максимальное напряжение затвор-сток – 20В. Если у вас другой транзистор, то информацию на него смотрите в даташите. Параметр этот называется Gate-Source Voltage. Если напряжение питание значительно меньше максимального напряжения затвор-сток, то можно вообще стабилитрон не ставить. Резисторы R2-R6 выполняют роль шунта. На схему добавил их побольше чтобы можно было удобно подобрать нужный номинал.

Схема работает следующим образом. В начальный момент времени транзистор VT2 открыт, ток протекает через светодиоды и шунт из резисторов R2-R6, транзистор VT1 закрыт. При протекании тока через шунт на нём падает определённое напряжение и если оно равняется напряжению открытия транзистора VT1, то он открывается и «садит» затвор транзистора VT2 на минус питания, транзистор VT2 закрывается и ток через светодиоды и шунт начинает снижаться. При снижении тока через светодиоды будет снижаться падение напряжение и на шунте, как только напряжение станет меньше чем нужно для открытия транзистора VT1, он закроется и «освободит» затвор транзистора VT2. Транзистор VT2 снова откроется и ток устремиться к светодиодам и шунту. Дальше все повторяется по кругу.

Настройка.

Настройка схемы заключается в определении необходимого тока для светодиодов и подбору номиналов резисторов шунта. Приблизительно считаю, что падение напряжение на шунте должно быть около 0,5В. Этого напряжения достаточно для открытия транзистора VT1. Хотя по даташиту напряжение база-эмиттер для транзистора BC846 – 0,66В, для отечественных – 0,7В.

В качестве примера рассчитаю для вас номиналы резисторов шунта на ток 170мА.

Сопротивление шунта(Ом) = падение напряжение на шунте(В) / ток через шунт (А), получается: Сопротивление шунта = 0,5В / 0,17А = 2,94 Ом. Полученный результат округляю до 3 Ом. Из стандартного ряда можно взять два резистора номиналом 1 Ом и 2 Ом и впаять их на плату, как R2, R3. Резисторы R4-R6 при этом исключаются из схемы.

Дальше нужно проверить какой ток стабилизирует стабилизатор. Для проверки потребуется амперметр или миллиамперметр. Прибор нужно подключить в разрыв любого из проводов питания, подать питающее напряжение, оно, кстати, должно быть больше чем типовое питание светодиодов. Лучше использовать источник питания с возможностью регулировки выходного напряжения. Подключаем, регулируем, смотрим.

Читайте так же:
Регулировка углов установки колес что это такое

В определённый момент времени ток через стабилизатор перестанет меняться – это и будет током стабилизации. Дальнейшее увеличение напряжения ничего не изменит, разве что добавит разогрев транзистора VT2. Нужно понимать, что всё избыточное напряжение будет выделяться на транзисторе VT2 в качестве тепла. Если ток стабилизации получился таким какой нужен значит подбор шунта закончен, если же ток отличается от нужного значения в большую сторону – увеличиваем сопротивление шунта, в меньшую – уменьшаем.

О печатной плате.

Печатную плату разрабатывал под SMD компоненты в программе P-CAD 2006. Размеры платы – 37×18мм, рисунок 3. Вы можете разработать свою печатную плату и прислать мне файл для размещения на сайте.

Печатная плата стабилизатора тока на полевом транзисторе

О деталях.

Перечень деталей, необходимых для сборки стабилизатора тока, свёл в таблицу 1.

Что необходимо знать при зарядке АКБ

Заряжая автомобильный аккумулятор, важно соблюдать ряд правил. Это поможет вам продлить срок службы аккумулятора и сохранить своё здоровье:

Самодельное зарядное устройство для автомобильного аккумулятора

  1. Все свинцовые аккумуляторы заряжают током не выше одной десятой от ёмкости батареи. Если у вас в авто стоит АКБ ёмкостью 60 А/ч, то расчёт зарядного тока выглядит так: 60/10=6 А.
  2. В процессе зарядки могут выделяться взрывоопасные газы. Особенно это касается обслуживаемых аккумуляторов. Достаточно одной искры, чтобы скопившийся в гараже или другом помещении водород взорвался. Поэтому заряжать аккумуляторы нужно в хорошо проветриваемом помещении или на балконе.
  3. Зарядка батареи сопровождается выделением тепла, поэтому постоянно контролируйте температуру корпуса АКБ на ощупь. Если батарея заметно нагрелась, то немедленно уменьшите зарядный ток или вообще прекратите зарядку.
  4. Если батарея обслуживаемая, постоянно контролируйте уровень электролита в банках и его плотность. В процессе заряда электролит «выкипает», а плотность повышается. Если пластины в банке оголились или плотность поднялась выше 1.29, а зарядка ещё не закончена, добавьте в электролит дистиллированной воды.
  5. Не допускайте перезарядки батареи. Максимальное напряжение на ней при подключённом ЗУ — 14.7 В.
  6. Не допускайте глубокой разрядки батареи, подзаряжайте её периодически. Если напряжение на батарее при отключённой нагрузке опустится ниже 10.7, АКБ придётся выбросить.

Вопрос о создании простого зарядного устройство для аккумулятора своими руками выяснен. Все достаточно просто, осталось запастись необходимым инструментом и можно смело приступать к работе.

Изменение магнитного потока аппарата для сварки

Метод предназначен для работы с трансформаторными агрегатами. Меняя магнитный поток, увеличивают КПД аппарата. Это помогает регулировать значение тока.

Агрегат настраивают за счет увеличения зазора, встраивания шунта или повышения подвижности обмоток. Добавляя или сокращая расстояние между катушками, наращивают мощность дуги.

Прежде аппараты снабжались специальной рукояткой. При ее повороте обмотка поднималась либо опускалась. Этот метод устарел и сейчас почти не применяется.

Драйвера

Для того чтобы быстро перезарядить Gate необходимо приложить, в зависимости от полевика, различное усилие. В интернете есть формулы для расчета токов, протекающих через драйвер. Я же хочу показать какие есть схемы управления полевиками. Конкретно нас интересует ключевой режим работы MOSFET-а.

Напрямую от контроллера

image

Не самый лучший вариант. Исключение составляют контроллеры со встроенным драйвером. RG резистор ограничивает ток через контроллер и уменьшает пульсации. У полевиков тоже есть своя индуктивность, она небольшая, но при быстром нарастании/спаде возникают колебания как в LC контуре. В моих краях найти контроллер со встроенным драйвером либо сложно либо дорого, поэтому приходится колхозить на универсальном ШИМ контроллере, под названием TL494.

image

Еще одна заметка по поводу резистора RG, когда требуется управлять большими токами и приходится ставить по 2-3+ транзистора, то данный резистор необходимо ставить перед каждым полевиком:

Особо крутые контроллеры, как на материнках, работающие на частотах 0.5-2МГц не требуют данного резистора и имеют отдельный выход для каждого полевика. Каждый полевик там представляет собой отдельную фазу с отдельным дросселем. Такие частоты выбраны специально для уменьшения габаритов всей схемы. Чем выше частота – тем меньше индуктивность нужна. В общих чертах.

Читайте так же:
Промывка регулировка карбюратора солекс

Производители контроллеров полевиков рекомендуют сопротивление RG 4.7 Ом. Даже видел гдето видео ролик с презентацией сравнения потерь при различных резисторах. На практике же RG может доходить до 200 Ом, т.к. драйвера разные – токи которые они могут выдержать тоже разные. И частоты тоже разные. Короче глупо говорить что ставьте везде 4.7 Ома и будет счастье. Поэтому данный резистор должен подбираться индивидуально под способности драйвера и емкость Gate полевика (в даташитах этот параметр обозначается как Ciss – Input Capacitance).

Двухтактный биполярный драйвер

image

Одна из самых эффективных схем управления:

В идеале управляющие транзисторы надо распологать как можно ближе к MOSFET-у, для уменьшения пути протекания тока. Важно добавить шунтирующий конденсатор между VGate и землей (в схеме не указан).

Хорошо если N-канальный полевик Source-ом подключен к общей шине – земле – что и контроллер. Такое бывает в Step-Up конвертерах, однако ими мир не ограничивается. В Step-Down конвертерах полевик подключается Drain-ом напрямую к +, а Source идет дальше на дроссель. Если вы (не дай бог как я, по своей неопытности, когда в первой пришлось собрать понижающий преобразователь) попробуете заставить работать такую схему:

image

То обнаружите что полевик уже дымиться и припой капает коту на хвост расплавился. Как я сказал в начале статьи, N канальный полевик открывается полностью если на Gate подать + относительно Source. Но в данном случае получается когда мы подаем + на Gate, он начинает открываться и Source поднимается к + тоже! В итоге полевик не открыт и не закрыт. Висит посередине и дико греется. Но тут существует простое решение, Bootstrap-драйвер:

image

Схема немного усложнилась. Как видите силовым полевиком (справа) управляет по прежднему двухтактный биполярный драйвер. Однако он заведен относительно Source полевика. Левый полевой транзистор – маломощный, используется для сдвига уровня. Сигнал подается инвертированный. Резистор Pull-Down (подтягивающий) лучше поставить, в случае чего чтобы схема не “летала в воздухе”. Вот как оно работает: изначально конденсатор CBOOT заряжается через диод DBOOT управляющим напряжением, т.к. транзистор закрыт, на выводе Source земля (после дросселя L идет нагрузка которая как бы “заземляет” на время выключения полевика вывод Source). Полевик сдвига уровня наоборот (слева), открыт, чтобы силовой полевик был закрыт. Собственно в этом и заключается инверсия. Когда полевик сдвига уровня закрывается через резистор RLEVEL подается положительное напряжение на драйвер, а далее драйвер усиливает сигнал и подает + на Gate силового транзистора. Он начинает открываться и… и открывается полностью! Так как конденсатор CBOOT заряжен и привязан к Source силового полевика, то когда Source выравнялся по напряжению с напряжением притания, то CBOOT поднялся еще выше и оттуда, сверху, рулит через драйвер полевиком! Получается напряжение в момент открытия силового полевика относительно земли таково: UCBOOT+UPOWER. А диод не позволяет этому напряжению уходить обратно. Поэтому важно рассчитать какая разница напряжений у Вас получиться и использовать диод с запасом на данное напряжение. Когда триумф нашего CBOOT подходит к концу левый полевик открывается, на драйвере напряжение падает и одновременно с этим Source силового полевика также возвращается на “землю”. Я бы рекомендовал добавить небольшой резистор после Drain управляющего полевика, чтобы, когда драйвер открыт и “земля” драйвера выше реальной земли, не убить маломощный управляющий полевик. На своей практике я использовал 12 Ом резистор. Такая схема, с КПД 85% управляла понижающим конвертером на 300 ватт…. только недолго, нагрузка на выходе в виде резисторов плавилась на глазах 🙂 Еще большего КПД можно достичь применяя синхронный выпрямитель, это когда вместо диода снизу ставится тоже полевой транзистор и открывается, когда верхний уже закрыт. Т.к. схема синхронизации двух полевиков заметно усложняется, то советую использовать спецальные синхронные драйвера. Там уже все задержки между открытием и закрытием есть, чтобы исключить протекание сквозных токов.

Читайте так же:
Как регулировать птф на логане

Схема ускоренного выключения на PNP

Самая простая и, возможно, самая популярная схема на одном PNP транзисторе:

image

image

В данном случае подразумевается что контроллер достаточно мощный, чтобы быстро зарядить полевик, но например, как у TL494, выход состоит всего лишь из одного npn транзистора. Обьеденив два имеющихся выхода TL494 и подцепив коллектором на + питания, эмитторы идут на вход этого полудрайвера. Главное эммитеры подтянуть на землю резистором. В случае напрямую выход TL494 подключить к полевику, то он будет очень долго закрываться, если подтягивающий резистор на килоом и больше. Если сдеать его на 100-200 ом, то тогда возрастает нагрузка на выходной каскад TL-ки, что тоже не хорошо:

В таком случае и применяется закрывающий драйвер:

image

В таком случае подтягивающий резистор делается на несколько килоом а RG рассчитывается также как раньше. При подаче положительного импульса, он проходит напрямую через диод D_ON и заряжает Gate полевика. Когда выходной каскад на TL-ке закрывается, то через подтягивающий резистор PULL_DOWN открывается Q_OFF и мгновенно разряжает через себя заряд Gate, что и приводит к моментальному закрытию полевика!

Почему N-канальный полевик лучше P-канального?

Возможно вы уже заметили что на всех схемах фигурирует N-канальный MOSFET. Этому есть несколько причин:

  • У N-канала при одинаковой серии меньшее сопротивление открытого канала.
  • N-канальные дешевле. 20A N-ch 1$ условно, то 20A P-ch 1.5$
  • В парных сборках N-ch и P-ch (в SO8 корпусе например) P-ch обладает как бОльшим сопротивлением так и меньшим максимальным током.
  • Сложно достать мощные P-ch полевики в какойнить деревне 🙂
  • Драйвер на рассыпухе для High-side N-ch может выйти дешевле чем разность стоимости P-ch – N-ch полевиков.

Так что если уже запаслись N-канальными полевиками, то вперед собирать к ним драйвера! Это не сложнее чем купить/найти P-ch.

Кому лень читать

Я не зря опять затронул эту тему ,это одна из самых массово выпускаемых интегральных микросхем.

Улучшенная схема будет выглядеть так: Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Для стопроцентного предотвращения загорания светодиода в его цепь дополнительно включены 2 диода.

Datasheet на русском.. К примеру, если в качестве датчика применить фототранзистор , то в конечном итоге получится фотореле, реагирующее на степень освещенности. На данной микросхеме реализовано множество схем зарядных устройств для литиевых аккумуляторов. Быстрое переключение.

Схема, приведенная ниже, представляет собой мощный светильник на двух ваттных светодиодах и ваттном IRF в корпусе ТО см. В полной схеме включения к TL добавляются еще два резистора, но в этом случае можно получить произвольное выходное напряжение. Рисунок 5.

Простое зарядное устройство для литиевого аккумулятора. Но этого тока достаточно для очень слабого свечения светодиода HL1. Следующая формула справедлива для вычисления сопротивлений резисторов, в случае если мы хотим получить какое-то фиксированное напряжение. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения.

Вместо заключения

Но у светодиода максимально допустимый ток составляет всего 20 мА. В данной схеме R3 рассчитывается точно также, как если бы использовался обычный стабилитрон, то есть зависит от выходного напряжения, диапазона входного напряжения и диапазона токов нагрузки. Варианты использования данной микросхемы могут быть различные, но максимальное распространение она получила в блоках питания с регулируемым и фиксированным напряжением. Реле времени TL нашел свое применение не только как источник опорного напряжения, а и во многих других применениях. Все это время она находится на первых местах в списке мировых лидеров в производстве электронных компонентов, прочно удерживаясь в первой десятке или, как чаще говорят, в мировом рейтинге TOP

TL Ее выпуск стартовал в году. В этом случае вместо фототранзистора нужно подсоединить два нержавеющих электрода, которые втыкают в землю на небольшом расстоянии друг от друга.
TL431 управляемый стабилитрон,как проверить работу.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector