Схема источника питания,блока питания,импульсного, и зарядные устройства
Схема источника питания,блока питания,импульсного, и зарядные устройства
У многих дома лежит старый принтер с поломанной печатающей головкой, или по каким то иным причинам. Кто то просто выкидывает, не подразумевая что в нем есть хорошие детали, из которых можно что нибудь смастерить.
В данной статье мы рассмотрим то, как сделать своими руками регулируемый блок питания из БП от принтера.
Виды и принцип работы
Выполнен блок питания (БП) самостоятельно или приобретён серийный экземпляр, требования, предъявляемые к нему неизменные, а именно: высокий коэффициент полезного действия (КПД), малый размер, высокая стабильность выходного сигнала, отсутствие электропомех, а также высокая надёжность.
Основная классификация источников питания осуществляется по режиму работы, он бывает линейным и инверторным. Соответственно Б. П. разделяются:
- на аналоговые (линейные);
- на цифровые (инверторные).
Из важных параметров БП выделяют:
- Тип выходного сигнала. В результате преобразования, напряжение на выходе может быть переменной или постоянной величины.
- Мощность. Характеризуется током, которое выдаёт устройство без ухудшения характеристик выходного напряжения. Единица измерения ватт.
- Коэффициент полезного действия. Показывает эффективность работы прибора, т. е. отношение преобразованной энергии к переданной. Чем показатель больше, тем менее греется устройство при работе.
- Защита от перегрузок. Способность устройства реагировать на возникновение нештатных ситуаций в питаемых им устройствах.
- Система охлаждения. По виду охлаждения разделяются на пассивные и активные. К пассивному виду относятся радиаторы или естественное охлаждение, к активному, нагнетатели воздуха или водяное охлаждение.
Схемы самодельных ЗУ для автомобильных АКБ на TL494
Ранее мы опубликовали схемы зарядных устройств для автомобильного аккумулятора.
Сегодня рассмотрим несколько схем с использованием широко распространённой специализированной мс TL494.
Зарядное устройство, рассматриваемое ниже собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки.
Для управления ключевым транзистором используется микросхема TL494 (KIA494, KA7500B, К1114УЕ4). Её можно часто встретить в компьютерных БП. Устройство обеспечивает регулировку тока заряда в пределах 1 … 6 А (10А max) и выходного напряжения 2 … 20 В.
Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 — VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 … 400 см2. Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы.
Так как в процессе работы происходит намагничивание магнитопровода постоянным током — из-за насыщения индуктивность его сильно зависит от протекающего тока. С целью уменьшения влияния подмагничивания на индуктивность, предпочтительней использовать альсиферовые магнитопроводы с малой магнитной проницаемостью, насыщение которых происходит при значительно больших магнитных полях, чем у ферритов.
В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров 3УСЦТ или аналогичный. Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,2 … 1,0 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 … 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается. Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации — необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора C3 или установить дроссель большего типоразмера.
При отсутствии силового транзистора структуры p-n-p в схеме можно использовать мощные транзисторы структуры n-p-n, как показано на рисунке, ниже.
В качестве диода VD5 перед дросселем L1 можно использовать любые доступные диоды с барьером Шоттки, рассчитанными на ток не менее 10А и напряжение 50В. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое. Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы.
Настройка схемы зарядного устройства
В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы.
Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 … 100 кОм.
Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.
Монтаж ЗУ
Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор. Монтажная схема подключения печатной платы приведена на рисунке справа. В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В и тока 6А, то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора также можно уменьшить до 100 .. 200 см2.
Это зарядное устройство можно использовать также и как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу.
Схема ЗУ на мс TL494 с нормализацией напряжения шунта
Ниже, представлен вариант схемы зарядного устройства для автомобильных аккумуляторов, который, несмотря на большую сложность, проще в настройке благодаря использованию операционного усилителя для нормализации напряжения токоизмерительного шунта.
В этой схеме в качестве шунта R13 можно использовать практически любой проволочный резистор сопротивлением 0,01 … 0,1 Ом и мощностью 1 … 5 Вт. Требуемое для нормальной регулировки тока в нагрузке напряжение 0 … 0,6 В на выводе 1 микросхемы DA1 достигается соотношением сопротивлений резисторов R9 и R11. Сопротивления резисторов R11 и R12 должны быть одинаковыми и быть в пределах 0,5 … 100 кОм. Сопротивление резистора R9 подсчитывают по формуле: R9 (Ом)= 0,1* I вых.max (A) * R11 (Ом) / I вых.max (А) * R13 (Ом). Переменный резистор R2 может быть любым подходящим, с сопротивлением 1 … 100 кОм. После выбора R2 рассчитывают требуемое значение сопротивления резистора R4, которое определяется по формуле: R4(кОм) = R2 (кОм) * (5 В- 0,1 * I вых. max (A)) / 0,1 * I вых. max (A). Переменный резистор R14 также может быть любым подходящим с сопротивлением 1 … 100 кОм. Сопротивление резистора R15 определяет верхнюю границу регулировки выходного напряжения. Номинал этого резистора должен быть таким, чтобы при максимальном выходном напряжении на движке резистора, в нижнем по схеме положении, напряжение составляло 5,00В. На рисунке показаны номиналы для максимального выходного тока 6А и максимального напряжения 15 В, но предельные значения этих параметров легко пересчитать согласно выше приведённым формулам.
Конструкция и монтаж
Конструктивно основная часть схемы выполнена на печатной плате размером 45 х 58 мм. Остальные элементы: силовой трансформатор, диодный мост VD2, транзистор VT1, диод VD5, дроссель Др1, электролитические конденсаторы С2, С7, переменные резисторы и предохранители размещены методом объёмного монтажа в корпусе зарядного устройства. Такой подход позволил использовать в схеме разные по габаритам элементы и был вызван необходимостью тиражирования конструкции.
Требования к элементной базе описаны выше. Правильно собранная схема начинает работать сразу и, практически, не требует наладки.
Эта схема также, как и предыдущая, может использоваться не только в качестве зарядного устройства , но и лабораторного блока питания с регулируемым ограничением выходного тока.
Двухполярный блок питания
Устройство двуполярного блока питания более сложное. Заниматься его конструированием могут опытные электронщики. В отличие от однополярных, такие БП на выходе обеспечивают напряжение со знаком «плюс» и «минус», что необходимо при питании усилителей.
Схема двухполярного блока питания
Хотя изображенная на рисунке схема является простой, ее исполнение потребует определенных навыков и знаний:
- Потребуется трансформатор со вторичной обмоткой, разделенной на две половины;
- Одними из главных элементов служат интегральные транзисторные стабилизаторы: КР142ЕН12А – для прямого напряжения; КР142ЕН18А – для обратного;
- Для выпрямления напряжения используется диодный мост, можно его собрать на отдельных элементах или применить готовую сборку;
- Резисторы с переменным сопротивлением участвуют в регулировании напряжения;
- Для транзисторных элементов обязательно монтировать радиаторы охлаждения.
Двухполярный лабораторный блок питания потребует установки также контролирующих приборов. Сборка корпуса производится в зависимости от габаритов устройства.
Как сделать лабораторный блок питания?
Изготовление лабораторного блока питания из старого бесперебойника — более сложная задача. Лабораторный блок питания зачастую используется радиолюбителями. Помимо трансформатора от старого ИБП, потребуются также:
- мощный транзистор;
- диоды для выпрямления напряжения;
- микросхема (от ОУ);
- реле;
- набор светодиодов;
- варистор;
- разъемы;
- оксидные конденсаторы;
- керамические конденсаторы.
Экспликация блока питания представлена на рисунке 2.
Первичная обмотка трансформатора получает напряжение от сети через вставленный элемент FU1 и выключатель подачи питания SА1. Подключенный параллельно RU1 (варистор) служит защитой от скачков напряжения.
При помощи R1 (резистор токоограничения) и VD1 (диод) происходит питание светодиода HL1, который выполняет роль индикатора наличия сетевого напряжения.
К обмотке || подключается выпрямитель напряжения, расположенный на VD2-VD5 (диодные сборы). Положение релейных контактов К 1.1 определяет работу трансформатора как двухполупериодного с напряжением в районе 10 В или как мостового с напряжением примерно 20 В. От выпрямителя напряжение поступает к полевому транзистору.
При помощи конденсаторов С1 и С3 сглаживаются пульсации. При помощи резистора R17 обеспечивается минимальная нагрузка стабилизатора напряжения.
От собранного на VD6-VD9 (диоды) выпрямителя при участии С2 и С5 (конденсаторы) происходит питание параллельного стабилизатора на:
- микросхемах (DA1, ОУ DA2);
- реле К1;
- вентиляторе M1.
Порог ограничения тока устанавливается резисторами:
- R7;
- R8.
Управление реле (К1) происходит при помощи резистора (VT2). Выходное напряжение устанавливается R19 (подстроечный резистор). При его превышении при помощи реле происходит переключение выходного напряжения. При превышении установленного R15 (резистор) значения максимальной температуры VT3 (транзистор) и RK1 (терморезистор) запускают в работу M1 (вентилятор). Чрезмерное напряжение реле и вентилятора распределяются, соответственно, на R13 и R18 (резисторы).
При превышении порогового значения тока нагрузки уменьшается напряжение выхода ОУ. VD 10 (диод) открывается, уменьшая напряжение на VT1 (затвор транзистора) до обеспечивающих протекание тока нормальных значений. Ограничение тока устанавливается R8 и R7 (резисторы) в интервалах 0-0,5 А и 0-5 А соответственно. При помощи конденсаторов обеспечивается устойчивое функционирование токоограничителя.
С увеличением их емкости значение устойчивости также увеличивается, однако уменьшается значение быстродействия токоограничителя.
На рисунке 3 изображены собранные выпрямители, транзисторы в монтаже с взаимосвязанными элементами. Выводы трансформатора оснащены гнездами, при необходимости их использования для них производится монтаж соответствующих им вилок, выпаянных из платы от старого ИБП.
Налаживание следует начинать с определения максимального значения напряжения на выходе при помощи R12 (резистор) с движком, расположенным сверху в схеме. При помощи подборки R13 (резистор) на К1 (реле) устанавливается номинальное значение напряжения. На вентиляторе напряжение устанавливает R18 (резистор).
Налаживание выходного токоограничителя происходит путем подключения последовательно соединенных амперметра и переменного резистора с сопротивлением 15 ом и мощностью 50 Вт.
Резисторы R1, R7 устанавливаются в положение в схеме слева, а R8 — справа, с его помощью происходит регулировка выходного тока.
Режим ограничения тока позволит зарядить аккумуляторы путем установки конечного напряжения и тока. В дальнейшем доработка осуществляется установкой оборудования:
- вольтметр;
- амперметр;
- комплексное измерительное устройство.
Многие самодельные блоки имеют такой недостаток, как отсутствие защиты от переполюсовки питания и от Кз (короткого замыкания). Даже опытный человек может по невнимательности перепутать полярность питания. И есть большая вероятность что после этого зарядное устройство придет в негодность.В этой статье будет рассмотрено 3 варианта схемы защиты бп от переполюсовки, которые работают безотказно и не требуют никакой наладки.
Модель защиты 1
Это схема защиты бп наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.
Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.
Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.
Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.
И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.
Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.
В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.
Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.
В случае внедрения такой защиты в зарядное устройство автомобильного аккумулятора, стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности зарядника. В среднем стоит использовать реле на 15-20 А.
Схема универсальная 2
Эта схема до сих пор не имеет аналогов по многим параметрам. Она одновременно защищает и от переполюсовки питания, и от короткого замыкания.
Принцип работы этой схемы следующий. При нормальном режиме работы плюс от источника питания через светодиод и резистор R9 открывает полевой транзистор, и минус через открытый переход «полевика» поступает на выход схемы к аккумулятору.
При переполюсовке или коротком замыкании ток в цепи резко возрастает, вследствие чего образуется падение напряжения на «полевике» и на шунте. Такое падение напряжение достаточно для срабатывания маломощного транзистора VT2. Открываясь, последний запирает полевой транзистор, замыкая затвор с массой. Одновременно загорается светодиод, поскольку питание для него обеспечивается открытым переходом транзистора VT2.
Из-за высокой скорости реагирования эта схема гарантированно защитит зарядное устройство при любой проблеме на выходе.
Схема очень надежна в работе и способна оставаться в состоянии защиты бесконечно долгое время.
Вариант простой 3
Это особо простая схема, которую даже схемой трудно назвать, поскольку в ней использовано всего 2 компонента. Это мощный диод и предохранитель. Этот вариант вполне жизнеспособен и даже применяется в промышленных масштабах.
Питание с зарядного устройства через предохранитель поступает на аккумулятор. Предохранитель подбирается исходя из максимального тока зарядки. Например, если ток 10 А, то предохранитель нужен на 12-15 А.
Диод подключен параллельно и закрыт при нормальной работе. Но если перепутать полярность, диод откроется и случится короткое замыкание.
А предохранитель – это слабое звено в этой схеме, который сгорит в тот же миг. Его после этого придется менять.
Диод следует подбирать по даташиту исходя из того, что его максимальный кратковременный ток был в несколько раз больше тока сгорания предохранителя.
Такая схема не обеспечивает стопроцентную защиту, поскольку бывали случаи, когда зарядное устройство сгорало быстрее предохранителя.
Анализ схемы защиты бп
С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.
Все Схемы защиты бп , кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.
Запускаем. Офигиваем от количества шума!
300мВ! Пачки, похоже на возбуждение обратной связи. Тормозим ОС до предела, пачки не исчезают. Значит, дело не в ОС
Долго тыкавшись, я нашел, что причина такого шума – провод! О_о Простой двужильный двухметровый провод! Если подключить осциллограф до него, или включить конденсатор прямо на щуп осциллографа, пульсации уменьшаются до 20мВ ! Это явление я толком не могу объяснить. Может, кто-то из вас, поделится? Теперь, понятно что делать – в питающейся схеме должен быть конденсатор, и конденсатор нужно повесить непосредственно на клеммы БП.
Кстати, насчет Y – конденсаторов. Китайцы сэкономили на них и не поставили. Итак, выходное напряжение без Y-конденсаторов
А теперь – с Y конденсатором:
Лучше? Несомненно! Более того, после установки Y – конденсаторов сразу-же перестал глючить измеритель тока!
Еще я поставил X2 – конденсатор, чтобы хоть как-то поменьше хлама в сети было. К сожалению, похожего синфазного дросселя у меня нет, но как только найду – сразу поставлю.
Обратная связь.
Про нее я написал отдельную статейку, читайте
Охлаждение
Вот тут пришлось повозиться! После нескольких секунд под полной нагрузкой вопрос о необходимости активного охлаждения был снят. Больше всех грелась выходная диодная сборка.
В сборке стоят обычные диоды, я думал заменить их диодами Шоттки. Но обратное напряжение на этих диодах оказалось порядка 100 вольт, а как известно, высоковольтные диоды шоттки не намного лучше обычных диодов.
Поэтому, пришлось прикрутить кучу дополнительных радиаторов (сколько влезло) и организовать активное охлаждение.
Откуда брать питание для вентилятора? Вот и я долго думал, но таки придумал. tl494 питается от источника напряжением 25В. Берем его (с перемычки J3 на схеме) и понижаем стабилизатором 7812.
Для продуваемости пришлось вырезать крышку под 120мм вентилятор, и прицепить соответствующую решетку, а сам вентилятор поставить на 80мм. Единственное место, где это можно было сделать – это верхняя крышка, а поэтому конструкция получилась очень плохая – с верху может упасть какая-то металлическая хрень и замкнуть внутренние цепи блока питания. Ставлю себе 2 балла. Не стоило уходить от корпуса блока питания! Не повторяйте моих ошибок!
Вентилятор никак не крепится. Его просто прижимает верхняя крышка. Так вот хорошо с размерами я попал.
Результаты
Итог. Итак, этот блок питания работает уже неделю, и можно сказать, что он довольно надежен. К моему удивлению, он очень слабо излучает, и это хорошо!
Я попытался описать подводные камни, на которые сам нарвался. Надеюсь, вы не повторите их! Удачи!
Добрый день. Хотелось бы уточнить номиналы резисторов R3, R8, R14 и R18, параметры L1 в управляющей электронике, номиналы резисторов R22 и R25 в фальшпанеле, а также возможно ли выложить печатные платы. Спасибо.
Автору конечно респект за разработку! Но для повторения нужно сначала расколдовать схему управления БП, котораые в ПДФе. Блин! Что заставляет вас сначала зашифровывать схему? А тот, для кого это здесь выложено, потом расшифровывает эту схему. Какой же дебил так так придумал. Неужели нельзя было нормально нарисовать обе схемы управления (pdf) на одном листе и без всяких ссылок типа: Vref, AGND… Что за бездарность такая. BSVi — тебе большой минус по черчению схем! Ты бездарность. Никогда больше этого не делай. Попроси специалистов сделать это
Автор проделал приличную работу и написал полезную статью.
Насчет схем, уж извините, наоборот, Вы показываете свою безграмотность
Возьмите пример применения любой импортной микросхемы (App Note), и Вы увидите там такой же стиль оформления электрических схем.
Этот стиль, кстати, весьма удобен тем, что даже достаточно объемная схема остается легко читаемой, а не превращается в трудночитаемую «вермишель».