Appletaxi.ru

Реальное авто
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Управление вентиляторами с помощью частотных преобразователей

Управление вентиляторами с помощью частотных преобразователей

Режим работы электродвигателей, приводящих в действие вентиляционные системы, отличается от тех, что работают в силовых приводах. В первую очередь оно заключается в том, что нет необходимости удерживать постоянный вращающий момент на валу. Кроме того, разгон, торможение и остановка происходят с меньшей интенсивностью. Поэтому управление вентиляторами осуществляется так называемым скалярным методом, а частотные преобразователи для вентиляторов использующиеся для этого, наиболее конструктивно просты и обладают минимальным набором функциональных возможностей.

Что такое скалярное управление

Прежде чем описывать этот тип управления, стоит остановиться на самом определении «скалярный». В переводе с латинского scalaris – ступенчатый, если прочитать это слово внимательно, то вы увидите еще одно значение – шкала. Этим термином описывается любая величина, имеющая одно фактическое значение. Например, масса, площадь, температура. Если же какому-либо физическому явлению сопутствует еще и направление распространения, то она является векторной величиной. Таковой является, например, так называемая сила, которой в механике Ньютона присвоен знак F. А все потому, что она не может быть не приложена к чему-либо, то есть, имеет направленную, векторную, природу.

Рисунок 1 – график зависимости частоты тока, питающего двигатель, от времени при скалярном управлении

Скалярное управление вентиляторами заключается в отслеживании и поддержании одного параметра – отношения напряжения к частоте (u/f). Если оно будет стабильным, то стабильной будет и величина магнитного потока в зазоре между статором и ротором асинхронного электродвигателя. А как раз она и определяет частоту вращения вала.

Рисунок 2 – изменение частоты тока и амплитуды напряжения при скалярном управлении

Особенностью управления на низких оборотах является необходимость учета сопротивления обмоток статора, вызывающего дополнительное падение напряжения, и изменение заданного соотношения u/f. Поэтому при скалярном управлении частоту питающего напряжения никогда не снижают менее 3 Гц, а максимальный вращающий момент на пуске ограничивают полуторным превышением номинала. Для вентиляторных установок, не испытывающих больших нагрузок в момент раскручивания это вполне нормальное значение.

Существует два способа осуществления скалярного управления:

1. Без датчика скорости вращения (энкодера) вала двигателя.

2. С датчиком вращения.

Скалярное управление без энкодера

Частотные преобразователи для вентиляторов, на валу которых не установлен энкодер, включаются по приведенной ниже схеме.

2020-12-14_15-48-57.png

Недостатком этого метода является то, что не учитывается так называемое скольжение – отставание фазы вращающегося магнитного потока ротора от статора. Возникает оно вследствие электрических потерь, возникающих в воздушном зазоре между этими деталями асинхронного электродвигателя.

Если на валу нет нагрузки, то скольжение близко к нулю, хотя никогда не станет равным ему. В этом случае заданный паттерн – соотношение u/f будет провоцировать перевозбуждение и увеличение частоты вращения. Если возникнет перегрузка и двигатель остановится, то скольжение увеличится, спровоцировав возникновение короткого замыкания в роторе. Однако частотники для вентиляторов, включенные по такой схеме, не отреагируют на изменение, что может привести к аварии всей установки. Обычная ширина диапазона автоматической регулировки частоты вращения находится в пределах от 2 до 3 процентов от номинала, установленного значением u/f.

Диапазон регулирования в схеме без энкодера определяется соотношением 1:40. Например, если на электропривод будет подаваться переменное напряжение с частотой 60 Гц, то минимальным значением частоты является 1,5 Гц.

Скалярное управление с энкодером

При использовании датчика частоты вращения частотные преобразователи для вентиляций включаются по схеме, приведенной ниже.

2020-12-14_15-52-23.png

Недостатком этого способа является сам датчик скорости, технические характеристики которого могут ограничивать максимальную частоту вращения вала. Поэтому диапазон регулирования сужается до соотношения 1:10. А это дополнительно снижает возможности управления вентиляторными установками на малых оборотах. Вращающий момент во время пуска будет еще меньшим.

Читайте так же:
Регулировка лапок корзины сцепления зил 130 не снимая коробку

Достоинства и недостатки скалярного управления

Управление вентиляторами скалярным методом имеет как достоинства, так и недостатки.

В первую очередь, он очень прост и не требует чрезмерно сложных устройств, а также высокой квалификации персонала, обслуживающего вентиляторную установку. Кроме того, один частотный преобразователь может управлять несколькими электродвигателями, суммарная мощность которых не превышает ту, что указана в его паспорте.

Однако этот способ не позволяет реагировать на отклонения от нормы быстро, кроме того, диапазон изменения скоростей вращения вала ограничен. На величину вращающего момента нельзя влиять совсем, для этого требуется векторное управление.

Частотные преобразователи для управления вентиляторами

Большинство производителей силовой электронной продукции выпускают специальные серии частотных преобразователей, для которых управление вентиляторами является узкоспециализированной задачей.

ESQ-210

Выпускается российской компанией «Элком». Управляют одно и трехфазными двигателями мощностью от 0,2 до 3,7 кВт. Предел изменения выходной частоты от 0,1 до 400 Гц.

Приборы бренда Toshiba. Управляют только трехфазными электродвигателями мощностью от 0,4 до 300 кВт. Имеют девять режимов работы и возможность подключения к локальным вычислительным сетям для дистанционного управления.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Типы вентиляторов постоянного тока

Существует три основных типа вентиляторов постоянного тока (они же кулеры): двухпроводные, трехпроводные и четырехпроводные.

  • Двухпроводной вентилятор имеет два контакта — питание и заземление. Этим вентилятором можно управлять либо путем изменения напряжения постоянного тока, либо с помощью управляющего сигнала ШИМ.
  • У трехпроводного вентилятора есть сигнал тахометра, который показывает скорость вращения. Этим вентилятором также можно управлять, изменяя напряжение постоянного тока или используя низкочастотный управляющий сигнал ШИМ.
  • Четырехпроводной вентилятор имеет специальный вход PWM, который можно использовать для управления скоростью.

Управление электрокалорифером

Управление нагревателем обычно осуществляется ступенчато, сначала включается первая ступень нагревателя, затем последовательно включаются/выключаются следующие ступени, так называемые опорные. Соотношение между временем включения и отключения зависит от необходимости в нагреве. Выходная мощность электрического нагревателя вычисляется по ПИ-закону, регулируемая величина — по датчику температуры приточного воздуха.

Сигнал управления устройством, непосредственно регулирующим мощность, в качестве которого могут применяться тиристорные регуляторы, твердотельные реле, обычные контакторы, может быть либо аналоговый с напряжением 0-10V, либо дискретный.

При включении нагрева, сначала включается первая ступень и за счет плавного изменения мощности, которое происходит благодаря управляющему сигналу 0-10V, обеспечивается точное поддержание требуемой температуры. Если мощности первой ступени не хватает, то включается вторая ступень, а производительность первой ступени сбрасывается и начинает регулирование заново. Если не хватает мощности двух ступеней, то включается третья ступень и т.д. При необходимости снижать температуру, основное регулирование осуществляется с помощью первой ступени, остальные ступени выключаются по мере надобности.

Для защиты от частого включения ступеней мощности, используется гистерезис, равный примерно 10 % мощности. То есть вторая ступень включится при значении выходной мощности 105 %, выключится при снижении до 95 % (205 % и 195 % для третьей ступени, соответственно).

Общий алгоритм работы системы

Запуск системы осуществляется следующим образом. В режиме ожидания зимой система выключена и перед запуском никаких предварительных действий не требуется. В этом, кстати, заключается еще одно отличие от систем водяного обогрева, где перед запуском необходимо прогревать калорифер до заданной температуры.

При переходе в режим Работа, включается ТЭН калорифера и начинается плавное увеличение мощности нагрева. Одновременно с включением калорифера, открывается воздушная заслонка. Затем, с некоторой задержкой, запускается вентилятор приточного воздуха. При этом уставка температуры начинает плавно снижаться до номинального значения.

Читайте так же:
Плавают обороты из за неправильной регулировки клапанов

Переход установки в дежурный режим должен сопровождаться продувкой электронагревателя. Во время продувки, питание с электронагревателя снимается, но вентилятор должен продолжать работать в течении некоторого времени, для охлаждения калорифера и только после этого выключаться. Иначе, если не соблюдать это правило, ТЭН нагревателя может просто выйти из строя.

Такой же алгоритм действий и при срабатывании защиты от перегрева — сначала должен выключаться нагрев, затем идет продувка калорифера вентилятором и только после этого отключение вентилятора.

Также должна быть предусмотрена блокировка работы электронагревателя при выключенном приточном вентиляторе. В случае резервирования вентиляторов, которое позволяет продолжать работу вентустановки, используя резервный вентилятор, в случае отказа основного, переключение происходит при поступлении сигнала аварии с работающего вентилятора (термоконтакт, авария ПЧ) либо по сигналу с прессостата. Если же и в случае резервного приходит сигнал об аварии, установка выключается.

Для вентиляторов должны быть предусмотрены следующие виды защит:

  • Сигнал о перегрузки электродвигателя, по срабатыванию встроенного термоконтакта.
  • Отказ преобразователя частоты, при этом контроль электрических параметров двигателя осуществляется встроенными функциями самого ПЧ.
  • Обрыв ремня. Фиксируется по срабатыванию датчика перепада давления на вентиляторе.

При срабатывании защиты электродвигателя вентустановка переходит в дежурный режим и в журнал контроллера записывается событие «Перегрузка».

При поступлении сигнала «Отказ ПЧ» установка также переходит в дежурный режим, снимается сигнал подачи питания на преобразователь частоты, и в журнал записывается событие «Отказ ПЧ». В системах с резервированием вентиляторов вместо перехода в дежурный режим контроллер включает резервный вентилятор.

При поступлении сигнала с пожарного датчика, установка переходит в дежурный режим. При этом останов происходит сразу, без продувки электрокалорифера.

Работа остальных элементов вентустановки, в принципе, ничем не отличается от работы в установках с водяным калорифером, поэтому в данной статье их можно не рассматривать.

Система автоматического управления вентилятором.

Система автоматического управления вентилятором своими руками.

Часто в радиолюбительской практике возникает необходимость охлаждать методом обдува какие-либо мощные активные элементы: регулирующие транзисторы в блоках питания, в выходных каскадах мощных УНЧ, радиолампы в выходных каскадах передатчиков и т.д.

Конечно, проще всего включить вентилятор на полные обороты. Но это не самый лучший выход-шум вентилятора будет напрягать и мешать.

Система автоматического управления вентилятором-вот что может быть выходом из ситуации.

Такая система автоматического управления вентилятором, будет управлять включением/выключением и оборотами вентилятора в зависимости от температуры.

В данной статье предложен простой, бюджетный выход из ситуации…

Итак, некоторое время тому назад знакомый товарищ попросил изготовить ему систему автоматического регулирования оборотов вентилятора охлаждения для зарядного устройства. Поскольку готового решения у меня не было-пришлось поискать что-либо подходящее в интернете.

Всегда руководствуюсь принципом –«делать жизнь как можно проще», поэтому подыскивал схемы попроще, без всяких там микроконтроллеров, которые сейчас суют где надо, и где не надо. Попалась на глаза статья :http://dl2kq.de/pa/1-11.htm. Решено было испытать описанные в ней автоматы управления вентилятором…

Система автоматического управления вентилятором №1.

Система автоматического управления вентилятором

Принципиальная схема устройства показана ниже:

В данном случае применен вентилятор с рабочим напряжением 12 В.

Схема питается напряжением 15…18 В. Интегральный стабилизатор типа 7805 задает начальное напряжение на вентиляторе. Транзистор VT1 управляет работой интегрального стабилизатора. В качестве датчиков температуры использованы кремниевые транзисторы (VT2 и VT3) в диодном включении.

Схема работает следующим образом: в холодном состоянии датчиков температуры напряжение на них максимально. Транзистор VT1 полностью открыт, напряжение на его коллекторе ( а значит и на выводе 2 интегрального стабилизатора) составляет десятые доли вольта. Напряжение, подаваемое на вентилятор почти равно паспортному выходному напряжению микросхемы LM7805, и вентилятор вращается на небольших оборотах.

Читайте так же:
Ремень грм регулировка 21124

По мере прогрева датчиков температуры ( одного любого из них, или обеих) напряжение на базе VT1 начинает уменьшаться. Транзистор VT1 начинает закрываться, напряжение на его коллекторе увеличивается, а соответственно, увеличивается и напряжение на выходе микросхемы LM7805.

Обороты вентилятора также увеличиваются и плавно достигают максимальных. По мере остывания датчиков температуры происходит обратный процесс и обороты вентилятора уменьшаются.

Количество датчиков может быть от одного до нескольких ( мною опробовано три параллельно включенных датчика). Датчики могут быть установлены как рядом друг с другом ( для повышения надежности срабатывания), так и размещены в разных местах.

Изначально данная схема разрабатывалась для применения в мощном ламповом усилителе мощности КВ диапазона, отсюда большое количество блокировочных конденсаторов. При применении данной системы автоматического управления режимом работы вентилятора, скажем, в блоках питания, или в мощных усилителях НЧ блокировочные конденсаторы можно не устанавливать.

Данная схема интересна еще и тем, что датчики температуры могут быть как закреплены на радиаторах мощных транзисторов, диодов и иметь непосредственный тепловой контакт с ними,так и установлены на весу, в потоке теплого воздуха.

В качестве транзисторов VT1…VT3 можно применить любые кремниевые транзисторы в пластиковом корпусе и структуры n-p-n. Мною успешно испытаны транзисторы КТ503, КТ315, КТ3102, S9013, 2N3904. Подстроечный резистор R2 служит для установки минимальных оборотов вентилятора.

При настройке данной системы автоматического управления режимом работы вентилятора подстроечным резистором R2 устанавливают минимальные обороты вентилятора. Затем, нагревая датчик, или датчики, каким-либо источником тепла убеждаются в работоспособности системы и возможность срабатывания её от разных датчиков независимо.

Данная схема достаточно чувствительна-можно настроить её на срабатывание даже от нагевания датчика температуры рукой. Важное замечание. Схема измеряет не абсолютную температуру, а разность температур между переходами транзистора VT1 и датчиков VT2 и VT3. Поэтому плата устройства должна быть размещена в месте, исключающем дополнительный нагрев. Интегральный стабилизатор должен быть снабжен небольшим радиатором.

Система автоматического управления вентилятором №2.

Здесь описано аналогичное устройство, но имеющее некоторые особенности.

Дело вот в чем. Часто бывают случаи, когда система автоматического управления режимом работы вентилятора установлена в изделии, где имеется всего лишь одно питающее напряжение -12В, но и вентилятор рассчитан на работу от напряжения 12 В.

Для достижения максимальных оборотов вентилятора необходимо подать на него полное напряжение,или, другими словами, регулирующий элемент системы автоматического управления режимом работы вентилятора должен иметь практически близкое к нулю падение напряжения на нем. И в этом смысле схема, описание которой изложено выше, не подходит.

В этом случае применимо другое устройство, схема которого представлена ниже:

Система автоматического управления вентилятором

Регулирующим элементом служит полевой транзистор с очень низким сопротивлением канала в открытом состоянии. Мною использован транзистор типа PHD55N03.

Он имеет следующие характеристики: максимальное напряжение сток-исток -25 В, максимальный ток стока- 55 А, сопротивлением канала в открытом состоянии -0,14 мОм.

Подобные транзисторы применяются на материнских платах и платах видеокарт. Я добыл этот транзистор на старой материнской плате:

Цоколевка этого транзистора:

Именно очень низкое сопротивление канала в открытом состоянии и позволяет приложить к вентилятору практически полное напряжение питания.

В этой схеме датчиком температуры служит терморезистор R1 номиналом 10 кОм. Терморезистор должен быть с отрицательным температурным коэффициентом сопротивления ( типа NTC).

Номинал терморезистора R1 может быть от 10 до 100 кОм, соответственно нужно изменить и номинал подстроечного резистора R2. Так, для терморезистора номиналом 100 кОм, сопротивление подстроечного резистора R2 должно быть 51 или 68 кОм. Подстроечным резистором R2 в данной схеме устанавливается порог срабатывания схемы.

Читайте так же:
Как отрегулировать кулису на машине

Данная схема работает по принципу термоуправляемого реле: вентилятор включен/выключен в зависимости от температуры датчика.

Конструктивно, терморезистор R1 размещается на радиаторе транзисторов, которые обдувает вентилятор. Подстроечным резистором R2 при настройке схемы добиваются старта вентилятора при пороговой (начальной) температуре.

В качестве VT1 подойдет любой полевой транзистор с напряжением стока выше 20 В и сопротивлением канала в открытом состоянии менее 0,5 Ома.

Если напряжение питания не стабилизировано, то порог срабатывания схемы будет плавать, со всеми вытекающими последствиями. В этом случае полезно будет запитать терморезистор от стабильного источника питания, например -78L09.

Система автоматического управления вентилятором

Ниже приведен модернизированный вариант этой схемы. В данной схеме предусмотрена возможность независимой регулировки как минимальных оборотов при нормальной температуре, так и температуру, с которой обороты вентилятора начинают увеличиваться.

Здесь цепь R5, R6,VD2 позволяет установить минимальные обороты вентилятора при нормальной ( начальной) температуре при помощи подстроечного резистора R5. А резистором R7 устанавливают температуру, с которой вентилятор переходит на повышенные обороты.

Как и в предыдущих схемах, блокировочные конденсаторы необходимы при эксплуатации устройства в условиях воздействия мощных высокочастотных наводок-например ламповый усилитель мощности КВ диапазона. В других случаях в их установке нет необходимости.

Терморезисторов-датчиков температуры может быть несколько и установленных в разных местах. Вентиляторов тоже может быть несколько. В этом случае возможно ( но необязательно) будет необходимым предусмотреть небольшой радиатор для регулирующего транзистора.

Система автоматического управления вентилятором

Вид собранной платы системы автоматического управления обдувом, управляющий транзистор установлен со стороны печатных проводников:

Печатная плата, вид со стороны проводящих дорожек:

Все три схемы, приведенные в этой статье мною опробованы и продемонстрировали надежную и стабильную работу.

Обновление от 13.01.2020

Изготовил еще два варианта подобных регуляторов. Без использования терморезисторов.

Статья с подробным описанием здесь.

Дополнение от 19.02.2020.

Проделал лабораторную работу с целью определения возможности работы термоуправляемого регулятора, собранного по схеме №2 (см. текст статьи), от напряжения +27 В вместо штатных +12 В.

Делать эту работу пришлось, так как у некоторых коллег что-то там не получается и работает наоборот, и вовсе не так…

Схему собрал упрощенную-всего три детали. В качестве регулирующего транзистора применил IRF630.

Схема получилась такая:

В качестве нагрузки использован 27-ми вольтовый электродвигатель ДП25-1,6-3-27.

Всё заработало сразу, и как положено-при нагреве терморезистора двигатель начинает вращаться, при охлаждении останавливается. Порог срабатывания устанавливается подстроечным резистором 10 кОм. Причем, можно выставить так, что схема будет срабатывать даже от нагрева терморезистора дыханием.

Технология GreenTech

Сердце GreenTech бьется в энергосберегающей электронно-коммутируемой технологии ebm-papst (GreenTech ЕС technology). Чем меньше расходуется энергии, тем ниже затраты на электричество. Но это — только начало, электронно-коммутируемая GreenTech технология (GreenTech ЕС technology) означает также, что двигателями и вентиляторами можно управлять, они отрегулированы таким образом, что всегда соответствуют необходимым эксплуатационным требованиям. И это имеет огромное значение, поскольку нет ничего более экономичного, чем, к примеру, изделие, которое имеет функцию самоотключения, когда в этом есть необходимость.

Следующее преимущество электроники – бесщёточное коммутирование. Это позволяет электронно-коммутируемым GreenTech двигателям и вентиляторам работать абсолютно без износа, практически бесшумно, не теряя в производительности и имея более долгий срок службы.

Таким образом, благодаря технологии GreenTech день за днем уменьшаются расходы на электроэнергию, и в то же самое время, длительный срок службы позволяет снижать издержки на материалы и обслуживание.

Инновационная технология электродвигателей

Наши двигатели с внешним ротором давно известны среди специалистов – тихие, мощные и постоянно совершенствуемые, они сделали нас лидером мирового рынка. Благодаря замечательному интеграционному потенциалу они идеально подходят для самых разнообразных сфер применения. Дополнив эти решения электродвигателями с внутренним ротором для динамичных сфер применения и особо агрессивных химических сред, мы смогли получить самую широкую номенклатуру вентиляторов и двигателей в мире.

Читайте так же:
Варфарин как регулировать мно

Интеллектуальная электроника

— «мозг» любого современного системного решения. Использование электроники в качестве управляющего элемента позволяет получить идеальное сочетание приводных систем и аэродинамики, идеально приспосабливая каждое решение к конкретной области применения – с ручным управлением или в составе автоматической системы. В результате получается высококачественная конечная продукция из единого источника для любой области: от узкоспециализированных систем охлаждения электроники до энергосберегающих отопительных комплексов.

Аэродинамика, которая «думает» вместе с вами

Оптимальная форма имеет важное значение, для осевых вентиляторов, центробежных вентиляторов в корпусе и без корпуса, компактных и тангенциальных вентиляторов. Поэтому мы всегда проектируем лопасти, крыльчатки и канальные корпуса вентиляторов с учетом особенностей конкретного применения в определенной среде. Только так нам удается достичь максимально возможной эффективности при минимально возможном уровне шума. Для этого мы в совершенстве изучили аэродинамику.

Принцип работы

ЕС-двигателя основан на том, что в поле, создаваемом встроенными в ротор постоянными магнитами, осуществляется управление вектором магнитного поля путем изменения направления тока в обмотке статора. В каждый момент времени контроллер вычисляет и подает на обмотку статора полярность тока, которая необходима для того, чтобы обеспечить непрерывное вращение ротора с заданной скоростью.

EC-двигатели возможно подключать к постоянному источнику напряжения согласно параметрам или через встроенный коммутационный модуль непосредственно к сети переменного тока (220 В, 380 В). С использованием стандартного приборного интерфейса RS 485 или специальной шины ebm BUS обеспечена возможность управления вентилятором (либо группой вентиляторов до 31 шт. в каждой) при помощи ПК или КПК. Количество групп вентиляторов в интегрированной системе управления может достигать 256. Возможно также использование технологии Bluetooth. Предусмотрена выдача тревожных и аварийных сигналов, а также обеспечение мониторинга работы системы.

Лучшие недорогие контроллеры оборотов вентиляторов

Очень недорогой контроллер скорости для персонального компьютера с простыми технологическими решениями. Нет встроенного дисплея, однако установлено много других полезных дополнений.

Прибор нужно вставить в отсек системника 5.25″, он также может быть заменой оптического привода.

Устройство спроектировано для управления скоростями 2 кулеров. На фронтальную поверхность выводят 2 механических регулятора, меняющие обороты.

Электирическая схема подключения вентилятора канального ВКК

Аксессуары

Чтобы пользование вентилятором приносило вам радость, а ресурс вентилятора был использован на 100% предлагаем приобрести в нашем интернет-магазине аксессуары. Перед оплатой уточните у менеджера совместимость той или иной модели с вашим вентилятором.

    . Необходим для блокировки воздуховода от попадания в него холодного воздуха и неприятных запахов с улицы после выключения вентилятора;
  • Нагреватели. Устройство которое монтируется в разрыв воздуховода и позволяет нагревать воздух, например, для приточных систем и в зимнее время; . Не заменимое приобретение которое очистит приточный воздух для здорового микроклимата вашего офиса; . Устройства которые монтируются в воздуховод по обоим сторонам от вентилятора и избавляют вас от шума работы и вибрации воздуховода; . Применяются для ручного изменения скорости вентилятора в зависимости от потребности в воздухообмене вашего помещения;
  • Виброгасящие вставки. Изделия которые устанавливаются на воздуховод с целью погасить вибрации передаваемые от мотора вентилятора и создаваемое движением воздуха.

Технические характеристики на сайте приведены в ознакомительных целях и могут отличаться от заявленных.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector